\(\int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx\) [2008]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 541 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=\frac {24 a^2 \sqrt {a+\frac {b}{x^3}}}{91 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {6 a \sqrt {a+\frac {b}{x^3}}}{91 b x^2}-\frac {12 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {8 \sqrt {2} 3^{3/4} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \]

[Out]

-2/13*(a+b/x^3)^(1/2)/x^5-6/91*a*(a+b/x^3)^(1/2)/b/x^2+24/91*a^2*(a+b/x^3)^(1/2)/b^(5/3)/(b^(1/3)/x+a^(1/3)*(1
+3^(1/2)))+8/91*3^(3/4)*a^(7/3)*(a^(1/3)+b^(1/3)/x)*EllipticF((b^(1/3)/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/
3)*(1+3^(1/2))),I*3^(1/2)+2*I)*2^(1/2)*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))
)^2)^(1/2)/b^(5/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)-12/91
*3^(1/4)*a^(7/3)*(a^(1/3)+b^(1/3)/x)*EllipticE((b^(1/3)/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))
,I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/
2)))^2)^(1/2)/b^(5/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 541, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {342, 285, 327, 309, 224, 1891} \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=\frac {8 \sqrt {2} 3^{3/4} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}-\frac {12 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {24 a^2 \sqrt {a+\frac {b}{x^3}}}{91 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {6 a \sqrt {a+\frac {b}{x^3}}}{91 b x^2} \]

[In]

Int[Sqrt[a + b/x^3]/x^6,x]

[Out]

(24*a^2*Sqrt[a + b/x^3])/(91*b^(5/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)) - (2*Sqrt[a + b/x^3])/(13*x^5) - (6*
a*Sqrt[a + b/x^3])/(91*b*x^2) - (12*3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(7/3)*(a^(1/3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^
(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3
) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(91*b^(5/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3
)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]) + (8*Sqrt[2]*3^(3/4)*a^(7/3)*(a^(1/3) + b^(1/
3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcS
in[((1 - Sqrt[3])*a^(1/3) + b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(91*b^(5/3)*Sqrt
[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)^2])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 342

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int x^4 \sqrt {a+b x^3} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {1}{13} (3 a) \text {Subst}\left (\int \frac {x^4}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {6 a \sqrt {a+\frac {b}{x^3}}}{91 b x^2}+\frac {\left (12 a^2\right ) \text {Subst}\left (\int \frac {x}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{91 b} \\ & = -\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {6 a \sqrt {a+\frac {b}{x^3}}}{91 b x^2}+\frac {\left (12 a^2\right ) \text {Subst}\left (\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{91 b^{4/3}}-\frac {\left (12 \left (1-\sqrt {3}\right ) a^{7/3}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^3}} \, dx,x,\frac {1}{x}\right )}{91 b^{4/3}} \\ & = \frac {24 a^2 \sqrt {a+\frac {b}{x^3}}}{91 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {2 \sqrt {a+\frac {b}{x^3}}}{13 x^5}-\frac {6 a \sqrt {a+\frac {b}{x^3}}}{91 b x^2}-\frac {12 \sqrt [4]{3} \sqrt {2-\sqrt {3}} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {8 \sqrt {2} 3^{3/4} a^{7/3} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{91 b^{5/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.09 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=-\frac {2 \sqrt {a+\frac {b}{x^3}} \operatorname {Hypergeometric2F1}\left (-\frac {13}{6},-\frac {1}{2},-\frac {7}{6},-\frac {a x^3}{b}\right )}{13 x^5 \sqrt {1+\frac {a x^3}{b}}} \]

[In]

Integrate[Sqrt[a + b/x^3]/x^6,x]

[Out]

(-2*Sqrt[a + b/x^3]*Hypergeometric2F1[-13/6, -1/2, -7/6, -((a*x^3)/b)])/(13*x^5*Sqrt[1 + (a*x^3)/b])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1137 vs. \(2 (403 ) = 806\).

Time = 3.59 (sec) , antiderivative size = 1138, normalized size of antiderivative = 2.10

method result size
risch \(\text {Expression too large to display}\) \(1138\)
default \(\text {Expression too large to display}\) \(3556\)

[In]

int((a+b/x^3)^(1/2)/x^6,x,method=_RETURNVERBOSE)

[Out]

2/91*(12*a^2*x^6-3*a*b*x^3-7*b^2)/x^5/b^2*((a*x^3+b)/x^3)^(1/2)-24/91*a^3/b^2*(x*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I
*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))+(1/2/a*(-a^2*b)^(1/3)-1/2*I
*3^(1/2)/a*(-a^2*b)^(1/3))*((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/
2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(x-1/a*(-a^2*b)^(1/3))^2*(1/a*(-a^2*b)^(1/3)*(x+1/
2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1
/a*(-a^2*b)^(1/3)))^(1/2)*(1/a*(-a^2*b)^(1/3)*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(-1/2/a*
(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2)*(((-1/2/a*(-a^2*b)^(1/3)+1/2*I*3^
(1/2)/a*(-a^2*b)^(1/3))/a*(-a^2*b)^(1/3)+1/a^2*(-a^2*b)^(2/3))/(-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)
^(1/3))*a/(-a^2*b)^(1/3)*EllipticF(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^
(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a
^2*b)^(1/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2
*b)^(1/3))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))+(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a
*(-a^2*b)^(1/3))*EllipticE(((-3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*x/(-1/2/a*(-a^2*b)^(1/3)+1/
2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(x-1/a*(-a^2*b)^(1/3)))^(1/2),((3/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1
/3))*(1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))/(1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3
))/(3/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/3)))^(1/2))*a/(-a^2*b)^(1/3)))/(a*x*(x-1/a*(-a^2*b)^(1/3)
)*(x+1/2/a*(-a^2*b)^(1/3)+1/2*I*3^(1/2)/a*(-a^2*b)^(1/3))*(x+1/2/a*(-a^2*b)^(1/3)-1/2*I*3^(1/2)/a*(-a^2*b)^(1/
3)))^(1/2)*x*((a*x^3+b)/x^3)^(1/2)*(x*(a*x^3+b))^(1/2)/(a*x^3+b)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.12 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=-\frac {2 \, {\left (12 \, a^{2} \sqrt {b} x^{5} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right )\right ) + {\left (3 \, a b x^{3} + 7 \, b^{2}\right )} \sqrt {\frac {a x^{3} + b}{x^{3}}}\right )}}{91 \, b^{2} x^{5}} \]

[In]

integrate((a+b/x^3)^(1/2)/x^6,x, algorithm="fricas")

[Out]

-2/91*(12*a^2*sqrt(b)*x^5*weierstrassZeta(0, -4*a/b, weierstrassPInverse(0, -4*a/b, 1/x)) + (3*a*b*x^3 + 7*b^2
)*sqrt((a*x^3 + b)/x^3))/(b^2*x^5)

Sympy [A] (verification not implemented)

Time = 0.67 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.08 \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=- \frac {\sqrt {a} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 x^{5} \Gamma \left (\frac {8}{3}\right )} \]

[In]

integrate((a+b/x**3)**(1/2)/x**6,x)

[Out]

-sqrt(a)*gamma(5/3)*hyper((-1/2, 5/3), (8/3,), b*exp_polar(I*pi)/(a*x**3))/(3*x**5*gamma(8/3))

Maxima [F]

\[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=\int { \frac {\sqrt {a + \frac {b}{x^{3}}}}{x^{6}} \,d x } \]

[In]

integrate((a+b/x^3)^(1/2)/x^6,x, algorithm="maxima")

[Out]

integrate(sqrt(a + b/x^3)/x^6, x)

Giac [F]

\[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=\int { \frac {\sqrt {a + \frac {b}{x^{3}}}}{x^{6}} \,d x } \]

[In]

integrate((a+b/x^3)^(1/2)/x^6,x, algorithm="giac")

[Out]

integrate(sqrt(a + b/x^3)/x^6, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \, dx=\int \frac {\sqrt {a+\frac {b}{x^3}}}{x^6} \,d x \]

[In]

int((a + b/x^3)^(1/2)/x^6,x)

[Out]

int((a + b/x^3)^(1/2)/x^6, x)